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SUMMARY 
A new systematic formalism is presented for similarity analysis--i.e., for reducing the number of independent variables 
in systems consisting of partial differential equations and a set of auxiliary conditions. The formalism is a specializa- 
tion of previous group theory techniques developed by the authors. Concurrent with its presentation, and to illustrate 
that it is particularly well suited for practical similarity analyses, the formalism is applied to certain three-dimensional 
incompressible boundary layer flows; and a variety of results are elicited which exhibit somewhat greater generality 
than any previously reported for the class of flows. 

1. Introduction 

A new systematic formalism is.presented for reducing the number of independent variables in 
systems which consist, in general, of a set of partial differential equations and a set of auxiliary 
conditions (such as boundary and/or initial conditions). In engineering, such procedures are 
customarily termed similarity analyses. The formalism is a significant simplification of general 
group theory techniques developed by the present authors, [1], based upon elementary group 
theory and upon earlier methods due to Birkhoff [2], Michal [3] and his co-worker Morgan [4]. 
The principal advantage of the procedure reported here over that presented in [1] lies in the 
relative ease and rapidity with which the formalism may be applied, and which makes it some- 
what more suitable for practical similarity analyses. The key to the simplified procedure is this : 
Rather than initiate an analysis with a very general class of groups, as in [1], every analysis 
begins with the special, though yet rather general, class of the form (3.1). As a result, many of the 
manipulations become easier. 

The systematic formalism to be introduced here, as well as the general techniques of [-1], 
represent significant advances over previously reported group methods inasmuch as they are 
deductive : Specifically, (i) beginning with a general class of groups, an appropriate group (or 
class of groups) is deduced, (ii) the deduction procedure explicitly considers the auxiliary con- 
ditions as well as the differential equations, and (iii) sets of absolute invariants for the groups- -  
the similarity variables--are systematically derived. 

The formalism is explained by application to a problem in boundary layer flow: A system 
involving partial differential equations in three independent variables, (2.1)-(2.6), is examined 
for transformations of variables which enable it to be reduced to a system involving only 
one independent variable. 

2. Illustrative Problem 

The systematic formalism has application to a wide range of physical problems. However, to 
explain it, perhaps the best illustration is a familiar one taken from boundary layer theory: 
Consider the problem of incompressible laminar boundary layer flow over a flat plate, repre- 
sented in rectangular coordinates by 
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Ux+Vr+W z = 0 

uux + vuy + wuz - VUy r -  U U~ - W Us = 0 

uwx + vw r + wwz - VWy r - U ~ - W Wz = 0 

u(x, O, z)= v(x, O, z) = w(x, O, z) = 0 

lira u = U (x, z) 
y---~ oO 

lira w = W(x, z), 
y--+ o0 

(2.1) 
(2.2) 
(2.3) 
(2.4) 
(2.5) 

(2.6) 

wherein v(v > 0) represents the constant kinematic viscosity of the fluid; u(x, y, z) symbolizes 
the velocity component in the x-direction, and U(x, z) (U > 0) is its limit as the normal distance 
from the plate surface approaches infinity; etc. 

The objective is to apply the systematic formalism to develop transformations of variables 
which enable the given representation, (2.1)-(2.6), involving the three independent variables 
x, y, z to be reduced to a representation in one independent variable--to a similarity representa- 
tion. Several different cases can be deduced concurrently. These cases are distinguished from 
one another by the functions U(x, z) and W(x, z); the special form of these functions for each 
case arises naturally in the simultaneous development of all the cases. In particular, nine distinct 
cases exist which reduce the number of independent variables from three (x, y, z) to one (tl(x, y, 
z)); see Table 1. The nine cases include as special cases results presented earlier in [5]. The 
more general results obtained here, and especially the fact that all the results evolve naturally 
in a single analysis, testifies for the approach being presented. 

For each case in Table 1 a similarity representation for (2.1)-(2.6) is obtained by means of 
the transformation of variables {u = UF10/), v = F2(tl)/y, w = WF 3 (t/)} and elementary chain 
rule operations. Thus, as may be readily verified, for each case in Table 1 (2.1)-(2.6) may be ex- 
pressed respectively as 

dF 3 dF2 
C3rl2F1-4-Cltl 3 -4- C J l z r 3 + C z q 3 ~  + q dtl F 2 : 0  (2.7) 

C 3 [V~ 2 - 1] + C5 IF1 F3 - 1] + [C 1F~ + C2 F3] q dF~ 
dr/ 

+ 1 F2 dF1 dZF1 
t/ ~ -  v ~ =  0 (2.8) 

C4[F 2 -  1] + C6[VaV 3 -  1] + [ C~Vl + C2F3]~ / dV3 
d~l 

1 F dF3 d2F3 
+ ~  z~-~  - v~-~2 = 0  (2.9) 

as t /~O:  F , ~ 0 ,  [F2/~/]~0, F 3 ~ 0  (2.10) 

as t / ~  ~ :  F i l l ,  F 3 ~ l  (2.11) 

The manner in which the transformations of variables underlying (2.7)-(2.11) are established 
by application of the systematic formalism will now be presented. However, inasmuch as a 
detailed development may be found in [6], the discussion will center principally upon the major 
points of the formalism. While the present discussion proceeds within the context of the specific 
example (2A)-(2.6), the technique is equally applicable to other problems, simply by following 
the same steps. 

3. The Group of Transformations 

An elemental feature of any of the group approaches to similarity analysis is the 9roup of 
transformations ; (see [7, pp. 10-16], for an introduction to the mathematical group as applied 
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to similarity analysis). It has been typical of previous group approaches to initiate an analysis 
with a particular simple form of group. The manner in which such a group is to be selected has 
been vaguely explained; but previous experience generally has played a major role in the selec- 
tion process; (see [7, p. 12]). As a result of that approach, appropriate groups not conforming 
to custom can be overlooked, and hence so would any conclusions which would follow there- 
from. Too, a particular assumed special group need not necessarily lead to fruitful results. 

It was in recognition of the difficulties and uncertainties inherent in establishing a suitable 
group that the authors have proposed, [1], an effective procedure for deducin9 appropriate 
groups, beginning with a very general class of groups. Experience with the ixocedure has in- 
dicated, however, that for an extensive realm of problems of practical interest the resultant 
groups satisfy a somewhat more special, though yet rather general, form. Furthermore, the 
analysis is significantly shortened if initiated with this somewhat special class--a class which, 
very significantly, includes as a member virtually every one of the simple groups that has 
previously been reported to have utility for similarity analysis. 

Thus, in the notation of the given representation, (2.1)-(2.6), the present analysis is initiated 
with a class C o of two-parameter transformation groups with the form 

~ = CX(al, a2)x + KX(aa, a2) 

S: ~ : C ~ ( a l ,  a2)y+K' (a l ,  az) 
[ ~ = C (a 1 ,a2)z+Kz(al ,  a2) 

G: (3.1) 
= CU(al, a2)u+K"(al,  a2), 

f) = CV(al, a2)v+ K~(al, a2) 
if: = CW(al, a2)w+ KW(al, a2), 

U = CV(al, a2)U+KV(al, a2) 

W = CW(al, a2)W+KW(at ,  a2) 

where the real-valued C's and K's are at least differentiable in each real argument, but are 
otherwise unspecified. The a's are termed parameters. 

For the purpose of the formalism being presented it is necessary that the class of groups C G 
have complete sets of differentiable absolute invariants with a certain form. [A function 9(x, y, z, 
u, v, w, U, W) is said to be an absolute invariant for a group G provided that under the transfor- 
mations of G: 9(~, y, z .... ) = 9(x, y, z . . . .  ). And a set of absolute invariants for G is said to be 
complete if there is no absolute invariant of G that is functionally independent of those in the 
set.] By definition, CG is to be comprised of all two-parameter groups satisfying (3.1) which 
possess complete sets of differentiable absolute invariants with the form 

{rl(x,y,z), 9a(x,y,z,u,v,w, U, W)} 6 = 1 ..... 5 (3.2) 

wherein the Jacobian 0191 ..... gs]/O[u,.. . ,  W] ~ O. In w a powerful technique is provided for 
the derivation of complete sets for a given group; meanwhile it should be noted that ~/is formed 
from only the independent variables--i.e., t/is an absolute invariant of the subgroup S. As will 
be seen, the importance of the absolute invariants lies in the fact that they become the similar- 
ity variables (i.e., the variables of the similarity representations). 

Equations (3.2) suggest the reason two-parameter groups are invoked : With two-parameter 
groups the existence of similarity representations in a single independent variable q may be 
investigated. In [6] the analysis is further generalized by including one-parameter groups with 
the form (3.1) in the class CG. Since the one-parameter groups have complete sets with the form 
{t/l(X, y, z), q2(x, y, z), ga(x, y, z, u, v, w, U, W)}, they are effective for investigating the existence 
of similarity representations in the two independent variables i/1 (x, y, z) and t/2 (x, y, z). However, 
for conciseness this discussion is not included here; see I-6, w 8]. 

4. The Invariance Analysis 

Another elemental feature of all group approaches to similarity analysis is that the only groups 
considered are those which transform the problem "invariantly'. Consequently, the first 
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step of the formalism is to determine which--if  any- -of  the members of CG transform the 
problem at hand in this fashion. The invariance concept will now be developed; however a 
discussion of its importance and relationship to similarity analysis will be deferred until w 

Insofar as the invariance analysis of partial differential equations is concerned, the procedure 
to be followed is modeled after one developed by Michal and Morgan. Thus, (2.1) is said to be 
transformed invariantly under (3.1) whenever 

Ux W Vy + W z = H l ( a l ,  az)[Ux + Vr + Wz] (4.1) 

for some function Hi(a1, a2), which may be constant. The transformations in G, (3.1), are for 
the dependent and independent variables, and not for the derivatives. To transform the dif- 
ferential equations, transformations for the derivatives are obtained directly from G via chain 
rule operations: For example 

u~ = [C"/CX]ux, vr = [Cv/CY]vr, wyy = [Cw/[cy]2]wry,  etc. 

Thus, substitution into the left-side of (4.1) yields 

[C"/C ~] u~ + [C~/C y] vy + [Cw/C ~] w~ = HI (a l, a2) [u x + Vy + Wz] (4.2). 

It follows, then, that (2.1) is transformed invariantly when 

[Cu/C x] = [Cv/C y] = [Cw/C z] -- Hl(al, a2). (4.3) 

In like manner, (2.2) is transformed invariantly under (3.1) whenever there is a function 
H2(at, a2) such that 

uu~ + vuy + WUz - vuyy - U Ux - W U~ 

= H2(aj, a2)" [uu~ + vuy + wu z - VUyy- U U x -  WUz] (4.4) 

Substitution into the left-side of (4.4) and rearrangement yields 

[ [C"] 2/C~] uu~ + [C ~ C"/CY] vuy + [C TM C"/C z] wu, - v [C"/[C y] 2] uyy (4.5) 
- [ [C v] 2/CX] C U x -  [C w Cv/CZ] W Cz + R = H 2 [UU~ + vuy + w u , -  v u , , -  U U x -  W~], 

where 

R = { [K" C"/C ~] u~ + [K ~ C"/C'] u, + [K w C"/Cq u~ - [K ~ C~/C ~] U~ - [K w C~/Cq V~} 

Thus, it follows that (2.2) is transformed invariantly whenever 

[C"]  ~ C"C ~ CuC w C o ICY] ~ CVC ~ 

C ~ - C ~  - C ~ -  [ C r ] 2 -  C x - C ~ =  H2(a, ,az)  
(4.6) 

R = 0 :  K" = K" - KW -- KU -- KW -- O 

A like analysis shows that groups satisfying (3.1), (4.3) and (4.6) also transform (2.3) invariant- 
ly, and hence no further conditions arise. Therefore, (2.1, 2, 3) are invariant inform under such 
groups; i.e., when and only when (2.1, 2, 3) are satisfied, 

u x + v r + w  ~ = 0 

uu~ + VUy + wuz - vuy r - U Ux - W U~ = 0 (4.7) 

uwx + vwy + w w z -  vwyy -  U W x -  W W z  = 0 

which have the same form as (2.1, 2, 3). Moreover, following Birkhoff, (2.4, 5, 6) are also in- 
variant in form whenever the condition K y -- 0 is appended to (4.3, 6); that is, 

(x, 0, ~) = ~(~, 0, ~ )=  ~(~,  0, ~) = o 

lim ~7 = U lim ~ = W (4.8) 
~ o o  y~oo 
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[For example, since (4.6) yields K"---0, (3.1) indicates ~(~, y, 5)=CU(al, a2)u(x, y, z) where 
- -C '  (a t, a2)Y + KY (a l, de), etc. ;thus, when K'----0, u (x, 0, z)= 0 implies ~ (2, 0, 5)= 0.] 
Summarizing, (2,1)-(2,6) are invariant under groups of the form G whenever (4.3, 6) are satis- 

fied and K Y - 0 ;  that is, whenever the C's and K's satisfy 

C"= CV' CW = CW' C~= [CY]-I' C~= C"[C']2'  C~ = C~[C']2 (4.9) 
K" = K TM = K ~ = K v = K W = K r =-- 0 

Thus, the foregoing restrictions indicate that groups which are of further interest are those in 
the class CG, with the form 

I i  i C~(al, a2)x + Kx(al, a2)= C~[Cr]2x + K~(al, a2) 
S' CY(al, ae)y 

C~(al, az)z + KZ(al, a2)= Cw[c ']ez  + K~(aa, a2) 
G' (4.10) 

= C"(al, az)u, U = C"(al, a2) U 

= C"(aa, aa)v = v/C'(al, a2) 
= CW(al, az)w, W = CW(al, az)W 

5. A Similarity Postulate 

Comparison of (2.1)-(2,6) with (4.7, 8) reveals that the form is invariant under the transforma- 
tions of any group G'. Following Birkhoff, this outcome suggests that solutions be sought which 
are also invariant in form under G'. That is, functions {P, I', I w, I v, I w} are to be sought such 
that when 

u =  P(x,  y, z), v=  IV(x, y, z), w = IW(x, y, z) (5.1) 
U = IV(x, z), W = IW(x, z) 

then under G' 

= 1"(2, y, ~), ~ = F(~, y, ~), ~ = IW(~, :P, ~) (5.2) 

Solutions which exhibit this behavior are called invariant solutions, under G'. Indeed, it is in- 
variant solutions which are obtained via similarity representations for (2,1)-(2,6). The procedure 
leading to invariant solutions is embodied in the following statement, which is called here for 
conciseness the similarity postulate: 

Whenever a given representation (such as (2A)-(2.6)) in n (n > 1) dependent variables 
(ut, ..., u,) and m (m > 2)independent variables (x 1 . . . . .  x m) is invariant under an r-parameter 
group G, of transformations (such as groups of the form G'), the problem can generally be 
rewritten in terms of ( n + m - r )  variables. This is accomplished by a transformation of 
variables to a complete set of absolute invariants (t h . . . . .  qm-,. ; Yl, ..., g,) of G~ ; the result 
is called a similarity representation of the problem. A solution {g~=F~(ql, ...,nm-~); 

= 1 .... , q} of the similarity representation defines an invariant solution {u~ = I~(xl ..... xm)}, 
implicitly : 

9o(x ~ . . . . .  x m, h(xl ,  ..., xm), ..., In(...)) = Fo(~(x 1, ..., Xm), ..., ~m-,(...)) 

= 1 . . . . .  n )  

A review of the literature indicates that Birkhoff was probably the first to propose such a pro- 
cedure. Michal and Morgan have provided a rigorous basis for the method, but for representa- 
tions consisting of differential equations alone--i.e., without auxiliary conditions. Finally it 
should be mentioned that the similarity postulate given here is a somewhat restricted version 
of one presented by the authors elsewhere; see [8], [9]. 

Returning to specific consideration of the problem given by (2,1)-(2.6) and the class of groups 
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(4.10), according to the similarity postulate there is only one major task which remains: the 
derivation of complete sets of absolute invariants. Indeed, deduction of the invariants leads 
simultaneously to nine distinct complete sets for the class of groups satisfying (4.10), which 
lead in turn to the nine cases of Table 1. 

6. Complete Sets of Absolute Invariants 

Heretofore it has been typical for absolute invariants to be established via inspection of, and/or 
trial with, the group; (e.g., see [7, pp. 12-13]). And, as a result of the simple forms of groups 
usually assumed at the outset, the lack of a systematic approach has been relatively unimpor- 
tant. However, with the more complicated groups which can also arise, trial procedures to 
establish complete sets can be arduous, even when fruitful. Clearly then, a systematic technique 
for the derivation of complete sets is desirable. 

The key feature of the systematic technique to be presented is the application of a basic 
theorem from group theory. To emphasize the essential features of the theorem in a relatively 
uncomplicated form, it is now quoted for the case of two-parameter groups S', (4.10). 

Theorem: 
A function tl(X, y, z) is an absolute invariant o f  a two-parameter group S': {~=CX(al, a 2 ) x +  
KX(al, a2), ~P=Cr(al, a2)y, z=CZ(al ,  a2)z + Kz(al ,  a2)} i f  and only i f  t I satisfies the f irst  order 
linear partial differential equations 

(6.1) 

[tqx+ d x + thyuy + Yz = o 

where 
~, - [aC~/aad (a~, a~) = [ [aC"/aad + 2 [aCVaaa] ] (a~, a~) , 

cr - [aKX/~a,] (a~, a~), c% - [ a c , / a a d  (a~, a~), 

fl~ - [t?C~/t?a2] (a~, a~) = [ [OC"/~a2] + 2 [OCY/~a2] ] (a~, a~), etc. ; 

and wherein (a~ a2) denote the value o f  al and a2 which yield the identity: ,2 = x, ~ = y and ~ = z. 

By definition, for each of the two-parameter groups S' in the class CG, there is one and only one 
functionally independent solution to (6.1)--(the rank of the coefficient matrix for {~tl/ax, 
Otl/Oy, Otlfi?z} is two). Furthermore, if t/(x, y, z)r is a solution to (6.1), for a group S', 
then every other solution to (6.1), for S', is given in the form H(tl(x, y, z)) where H is a differenti- 
able function. It may be seen from (6.1) and the definitions of the constants cci, fli that differences 
between the groups S' are reflected by the e's and fl's. That is, in general, any particular group S' 
possesses a characteristic set ofe's and fl's ; and consequently a characteristic absolute invariant 
t/is yielded by (6.1). 

The extension of the foregoing theorem to a two-parameter group G' of the form (4.10) is 
straightforward and will be indicated in w 7 ; for each such group the number of functionally in- 
dependent absolute invariants g in a complete set equals the number of dependent variables-- 
five for the problem at hand. (And for a one-parameter group S' there would be only a single 
differential equation of the form (6.1) to be satisfied; see [6, p. 16].) It should also be mentioned 
that the theorem is a specialization of a considerably more general result that has previously 
been applied by the authors for similarity analyses, [1], [6], [8], [9]. 

7. Derivation of Distinct Complete Sets 

The similarity analysis of (2.1)-(2,6) now proceeds for the particular case of two-parameter 
groups of the form (4.10). The immediate objective is to establish a complete set for each such 
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group ; and as afirst step toward this goal, attention is to be focused upon the problem of deriv- 
ing the distinct t/'s, which are the independent variables of the similarity representations. The 
discussions of [6] indicate that each of the nine q's of Table 1 evolve concurrently when solutions 
to (6.1) are obtained via well-known standard techniques for solving linear partial differential 
equations (e.g., see [10, pp. 379-384]). However, for conciseness only two of the cases will be 
detailed here: Cases 1 and 2. 

According to the theorem ofw for a two-parameter group S' there is one and only one solu- 
tion to (6.1); that is, the coefficient matrix of {Otl/~x, Oil~By, Otl/az} must have rank two. The 
matrix has rank two whenever at least one of its two by two submatrices has a non-vanishing 
determinant; and this condition is met whenever at least one of the following is satisfied 

{[231x+232 ] r  [234z+23s]50 ,  [214xz+215x+224z+225 ] 5 0  (7.1) 

wherein 2~j = [a i f i j -a j  fli]. For convenience, then, the system (6.1) will be rewritten in terms of 
the quantities given by (7.1); the result is 

[231X+232] ~ + [234z+235] ~z = 0 
(7.2) 

~l~ [214XZ Av 215X-[- 224Z"~"~'25] ~Z 0 [231x+232]Y ~-y - 

Thus, upon solving (7.2) in lieu of (6.1), differences between the groups S' are now reflected 
by the 2's. In particular, Cases 1 and 2 of Table 1 evolve for those groups S' for which 23 ~ = 
234 = 0, 432 r 0, 435 5 0. According to [10, pp. 379-384], then, the first equation of (7.2) has the 
general solution 

~/=f(y, r z)) (7.3) 

where 

(x, z) = 235x - 232 z (7.4) 

However, to obtain a solution for the system (7.2) it is also necessary, of course, to satisfy the 
second equation as well as the first. Thus, with (7.3, 4), the second equation of (7.2) becomes 

af aT y ~y + [214xz + 21sx + 224z + 225 ] ~ = 0 (7.5) 

since 231=0 and 23250. 
The coefficient of O f / ~  in (7.5) is independent of y; thus, f o r f t o  be a function of y and ~, 

it is clearly necessary for the coefficient to depend only upon #. That is, it is necessary for 214 = 0 
and 232215 = -224235 ; then (7.5) becomes 

Y~YY [ ~35c3f+ [~15]~+2251~ O.c~f= (7.6) 

Upon invoking the above-mentioned standard technique once again, solutions to (7.6) are 
readily found to be in the form 

f = ~(yH(r (7.7) 

where H(~) is given via the ordinary differential equation 

[~2~51 ] d l n H  1 (7.8) 
L235A ~+225 d ~  - 

obtained by substitution of (7.7) into (7.6). 
Two distinct solutions may be obtained for (7.8), corresponding to (i) 2 ~ 5 ~ 0 and (ii) 2 ~ 5 = O. 

Thus, for 215 50,  
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H(0 ~ LL235J[[215] 4 + 2B5] z'/~15 -- [215x + 224z + 225] z' /z" . (7.9) 

Consequently, with (7.3, 7, 9) it follows that, for those groups S' with 214 = 231 = 234 = O, 232 ~& O, 
235 # 0, 215 r 232215 = -224235, absolute invariants are of the form 

~l 1 = ~b 1 (y[x + Az  + B] u) (7.10) 

which corresponds to Case 1 of Table 1. 
Similarly, for 215 =0, (7.8) yields the solution 

H (4) ~ exp (4/225) = exp (235 x/225) exp ( -  232z/225) (7.11) 

Thus, with (7.3, 7, 11) it follows that, for those groups S' with 214=215 =224=231 =234 =0, 
232 ~&0, 2355 & 0, absolute invariants are of the form 

q2 = 42 (y exp (#x) exp (mz)), (7.12) 

which corresponds to Case 2 of Table 1. 
In like manner, additional distinct q's, corresponding to cases of Table 1, may be obtained 

from (7.2). Thus, Case 3 evolves when 231 #0, 2345~ 0, Case 4 is obtained when 23a =0, 2345&0, 
23z # 0, 235 # 0, absolute invariants are of the form 

A complete set for a group G' not only includes an q(x, y, z) but also five functionally in- 
dependent g's--vid. (3.2). The procedure to be followed in deriving the g's is parallel to that used 
in obtaining the r/'s. Thus, extending the theorem ofw to the groups G', five independent solu- 
tions g (x, y, z, u, v, w, U, W) are to be established for 

Og ~g Og Og ~g 

c~g (3g (3g 
+ [~l~+~d ~ + ~ y ~  + [ ~ + ~ ]  ~ = o 

(7.13) 
ag (~g ~g (~g ~g 

f l~u~-  f l ~  + fl~w~ + f l ~ u ~  + f l ~ w ~ +  

~g ~g Og 
+ [ f l l~+/h]~  +/hy~y + [ /~z+/~d~ = o 

wherein e6 = [OCU/(~al] (a~, a~) = ~1 - 2~3, fi6 =- [OCU/(~a2] (a~, a~) = fix -2fl3, etc. 
Three functionally independent #'s may be readily obtained as solutions to (7.13) by inspec- 

tion. Thus, for every group G' of Ca,, 

{ gl(u, v) = r~(./v) I 
g2(v, y) F2(vy) ~ (7.14) 

g~(w, w) r~(w/W) j 

where the F's are arbitrary differentiable functions. 
To obtain complete sets, then, it only remains to determine two additional independent g's 

for each group. Perhaps the most direct procedure to follow in accomplishing this objective is 
to determine solutions to (7.13) with the forms: gg(x, U, z), gs(x, W, z), for then the same 
sequence of steps may be followed as in the derivation of the invariants t/(x, y, z) given by 
(7.10, 12). In analogy to the previous analysis of (6.1) for the q's, but with U and W playing 
(in turn) the role of y, two additional independent g's may be obtained with the forms 

g4(x, U, z) = F4(Ud94(x , z)) (7.15) 

g~(x, w, z)= r~(we~(~, z)) 
Specific expressions for c5 4 and o35 could be deduced at this point using procedures analogous 
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to those employed previously to obtain the arguments of (7.10, 12)--for details, see [-6, pp. 
48, 49]. However, as will be shown in the following, for the present application it is possible to 
simply forego this step. Thus, one merely proceeds with 94 and gs in the forms of (7.15), and it is 
found that the similarity representations can be established without foreknowledge of O34 and 
O3s ; and forms for O34 and o3s evolve naturally as a part of the development. 

8. Development of the Similarity Representations 

Thusly, for the cases being detailed here, forms for the invariants, needed to obtain similarity 
representations, have been established. According to the similarity postulate, therefore, simi- 
larity representations should be sought via changes of variables : F6(q) = 06. To illustrate this 
procedure simply, the ~'s and F's of(7.10, 12, 14, 15) are each selected to be the identity function. 
That is, the particular cases given by {rl=yn(x, z) where rc I = [ x + A z + B ] "  or 7z2=exp(#x ) 
exp (mz), 91 = u/U, g2 = vy, 93 = w/W, 94 = UO34(x, z), g5 = WO35 (x, z)} will be considered. 

For the cases under consideration, then, similarity representations are sought via transforma- 
tions {Fl(rl)=u/U, Fa(~l)=vy, F3(q)= w/W, F4(~/)= UO34(x, z), Fs(q)= WO35(x, z)}. As a first 
step it should be noted that F4 must equal a constant, Uo, since U and o34 are independent of y 
whereas ~/is not. Similarly, Fs equals a constant, Wo. So, 

u(x ,  z) = Uoco4(x, z) (8.1) 
w(x, z)= Wocos(x, z) (8.2) 

where, for convenience, co4-- [ ( D 4 ]  - I and co5 -- ['o3s]- 1 
The remainder of the analysis is straightforward. Thus, with q=yn ,  u=  Uoco4Fl(~/), v= 

Fz(~I)/y, w =  WocosF3(q) and elementary chain rule operations (2A), for example, may be re- 
written as 

~-2 ~xxJ r/ F I +  ~3-~-xx W + N Oz[ 
(8.3) 

[Wo cos O~lr/3 dF3 dF2 

+  azA + 
Inasmuch as the last term of (8.3) has a constant coefficient, for (8.3) to reduce to an expression 
in the, single independent variable q as indicated by the similarity postulate, it is necessary that 
the remaining coefficients be functions of q alone. Thus, since ~, co4, cos are independent of y, 

[Voco4/~ a] [8~/ax] - C1, [Wocos/rc a] [OTz/Oz] - C2 (8.4) 

[Uo/  2] [acojax] _= ca, [Wo/  [acodaz] - c 4 ,  (8.5) 

where the C's are constants. With (8.3, 4, 5) a similarity representation for (2A) may be obtained 
for each of the cases--namely, (2.7). Similar steps lead to (2.8)-(2.11) and the constants Cs, C6, 

[Wocos/co4rc 2] [clco4/clz] --- Cs, [Uoco4/cos~ 2] [ 8 c o s / a x ]  - C6. (8.6) 

The only remaining tasks are to utilize each of the q's, q = yrc~ (i = 1, 2), in turn with (8.4)-(8.6) 
to (i) evaluate the C's appearing in the corresponding similarity representation, and (ii) to evaluate 
the corresponding expressions for co4 and cos- To illustrate these steps, Case 1 with r/= yrc~ (x, z) 
= y [x + Az + B] ~, will now be considered : Since 7z i = [x + Az + B] ~, (8.4) yield respectively, 

[ktUo/C1] co4 = [a#Wo/C2] cos = [x + Az + B] 2"+1 (8.7) 

For convenience, let C1 =#Uo and C2 = A/~W0 ; then with (8.1, 2) and (8.7), it follows that 

U/Uo = 094 = [x + Az + B] 2, +1 (8.8) 
W/Wo = cos = [x  + A z  + B] 

In like manner with rc 1 and (8.8), equations (8.5) and (8.6) yield 
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[C3/Uo] = [C6/Uo] -- [2#+ 1] 

[C4/Wo] = [ C5/Wo] = A[2#+  1] 
(8.9) 

The foregoing conclusions regarding the C's and o's are reported in Table 1 as Case 1. Analo- 
gously, the entries corresponding to Case 2 may be derived via the above procedure when ~r 2 = 
exp (#x) exp (mz) is invoked. The remaining cases of Table 1 may be obtained in a like manner. 

9. Closure 

In this paper, a new systematic formalism for similarity analyses has been introduced. To 
summarize, the systematic formalism reported herein has three principal steps, each of which 
include advantages over the usual group approach: (1) An analysis is initiated with a general 
class of groups, (3.1), rather than by means of the specialized choices with limited capacity that 
have traditionally been the starting point. (2) Then, upon invoking the invariance concept, an 
appropriate subclass is deduced; the deduction procedure considers not only the differential 
equations but also the auxiliary conditions. (3) Finally, complete sets of absolute invariants-- 
the similarity variables--are derived in a systematic manner, rather than by the traditional trial 
and/or inspection procedures. 

Compared to the group methods for similarity analysis presented earlier by the authors [1], 
the present formalism has a number of desirable features : (i) The formalism explicitly considers 
the case of r-parameter groups, in contrast to the limited one-parameter discussion of [1]. 
(ii) When an analysis is initiated with a class of groups exhibiting the form (3.1) rather than the 
form utilized in [1], subsequent manipulations are significantly simplified--in particular, those 
required for the deduction of the subclass under which the problem transforms invariantly. 
On the other hand, as noted previously, groups of the form (3.1) are found to be very satisfactory 
for an extensive realm of practical problems. (iii) Too, initiating an analysis with the groups (3.1) 
assures that absolute invariants (the similarity variables) may be very readily deduced via the 
straightforward procedures described in w 6, 7. (iv) As illustrated by the present discussion, it 
may not be necessary to obtain detailed expressions for each of the invariants of a complete set, 
in order to obtain similarity representations. Thus, for the case at hand, it was possible to forego 
determination of expressions for 094(x, z) and e)5 (x, z) until after the system of equations (2.7)- 
(2,11) for the similarity representations was developed; consequently, considerable effort was 
saved. Another advantage of foregoing such details until after the similarity system is developed 
is the following. (v) For all the cases which evolve simultaneously, a single system of equations 
arises to represent the original system--here, (2.7)(2.11) arose to represent (2.1)-(2.6), for each 
of the cases of Table 1. And this similarity system is derived in one step for all of the different 
cases. (vi) Finally, while the present discussion focuses attention only upon the problem of 
deducing similarity representations for (2.1)-(2.6) in a single independent variable t/(x, y, z), 
it is also possible to utilize the same analysis to establish similarity representations in two in- 
dependent variables ; see [6, w 8]. And such representations have significance inasmuch as they 
typically admit more general forms for the unspecified functions appearing in a given represen- 
ta t ion-here  the free-stream velocity components U(x, z) and W(x, z)--than are obtainable 
via two-parameter groups. 

The formalism introduced here is well suited for the similarity analyses of practical problems. 
Thus, the formalism has yielded (Z7)-(2,11), which constitute nine distinct similarity representa- 
tions for the given system (2,1)-(2,6), without the need for explicitly introducing specific groups 
of transformations as in previous group methods [7, pp. 10-16], or to introduce ad hoc assump- 
tions concerning the form of the solution as in previous non-group methods [5, pp. 4-6]. 
Moreover, not only does the formalism presented here systematize similarity analyses, it also 
may yield more general conclusions than the heretofore conventional methods. That is, as 
indicated in the foregoing presentation the cases reported in Table 1 evolve concurrently via 
a single systematic approach; and as may be established by comparison of Table 1 with 
I-5, pp. 28-30] the similarity variables reported here are in every instance as least as general, 
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and in some instances are more general in form. It is believed, therefore, that the systematic 
formalism introduced here significantly facilitates similarity analyses of partial differential 
equations with auxiliary conditions. 
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